Note - This is not a full comprehensive list. Courses such as advanced journal clubs anddepartmental Research in Progress are not included.

Always check your Department guidelines and with your department coordinator, thesisadvisor, and the course instructor for permission and guidance.

Classroom assignments may change between the time you register and when classes begin. Please check your class schedule for the latest classroom location information before attending class.

Fall 2021 Class Schedule

https://student.apps.utah.edu/uofu/stu/ClassSchedules/main/1218/index.ht ml

COVID-19 Central @theU

https://coronavirus.utah.edu/

ANAT 7710 – N	euroanatomy			
Class Number	Instructor	Credit Hours	Days/Times	Session
4293	Adam Douglass	1.5	T/Th/F 10:45AM- 11:35AM	First Half
Cross listed with NE	EUSC 6060			
Anatomy of the hum	nan nervous system (designed for gradua	ate students).	
Lecture				

ANAT 7750 - De	evelopmental Ne	urobiology		
Class Number	Instructor	Credit Hours	Days/Times	Session
11313	Michael Deans	1.5	T/Th/F 10:45AM – 11:35AM	Second Half
Cross listed with NE	EUSC 7750			
Cellular and molecu	lar biology of nervou	s system developme	ent.	
Lecture				

ANAT 7770 - Neural	Regulation of Metabolism
--------------------	--------------------------

Class Number	Instructor	Credit Hours	Days/Times	Session
12153	Owen Chan	2.0	T/Th 10:45AM –	Full Semester
			11:35AM	

This course is intended to be a graduate level course that provides a detailed overview of the central mechanisms that regulate peripheral metabolism and feeding. Topics to be covered include neural circuits involved in the regulation of brain glucose sensing, hypothalamic control of energy balance, the hypothalamic melanocortin system, mesolimbic reward system as well as central connections with liver and adipose tissue and brain energetics. These topics will be discussed in the context of both normal functionality and in the pathophysiology of diseases such as obesity and diabetes.

Lecture

ANAT 7790 - Microscopy & Imaging

Class Number	Instructor	Credit Hours	Days/Times	Session
17269	Adam Douglass &	1.5	T/F 9:00AM –	Frist Half
	Kristen Kwan		10:00 AM	

Covers theory and practice of biological light microscopy, including sample preparation and staining, fluorescence and confocal microscopy, digital image analysis and quantitation, and figure preparation. A class project uses data from students' own research.

Special Projects

BIOL 2030 – Genetics

Class Number	Instructor	Credit Hours	Days/Times	Session
Multiple Sections	John Stansfield	3.0	Multiple Sections	Full Semester
Study of classical gen	etics including the r	rules of inheritance, tr	ansmission genetics,	and genes in
populations. Also cove	ers molecular analy	sis of gene structure,	function, expression,	and evolution.
Contact Biology for pe	ermission and gradu	uate level enrollment i	nstructions	
Lecture				

BIOL 5425 – Mycology

Class Number	Instructor	Credit Hours	Days/Times	Session
-	Bryn Dentinger	4.0	T/Th 9:10AM –	Full Semester
			10:30AM	

From mushrooms to molds, this course will provide an overview of the enormously diverse Kingdom Fungi, with an emphasis on their ecology and evolution. Through lectures and labs, this course will use a phylogenetic framework to introduce the major groups of fungi, demonstrate how to recognize and document them, and discuss their significance to the environment and human society. The lab will include a field excursion followed by molecular identification of collected samples using DNA sequencing and phylogenetic analysis.

This course requires registration for a lab section. Students will be automatically registered for this lecture section when registering for the pertinent lab section.

There is a differential tuition fee of \$23.30 per credit hour for these courses. The fees are not covered by the School of Biological Sciences or the Tuition Benefit Program.

For course questions, please contact Bryn Dentinger at <u>bryn.dentinger@utah.edu</u>.

Lecture

BIOL 5510 - Genes, Development, and Evolution Class Number **Credit Hours** Days/Times Instructor Session 17688 Michael Shapiro 3.0 T/Th 10:45AM -Full Semester 12:05PM Understanding the molecular basis of evolutionary change is a fundamental challenge in biology. This course focuses on recent scientific literature in genetics and developmental biology to explore the mechanisms that impact evolutionary change. Topics concentrate on animal biology and include the molecular basis of diversity in body plans, limb development and evolution, genetics of pigmentation differences, and variation in other adaptive traits. We will also address how humans have shaped animal diversity through domestication. In some cases, the genes that control normal variation among species are also involved in human disease; therefore, studying the molecular mechanisms of diversity promises a greater understanding of human health. It is recommended (but not required) that BIOL 2030 is taken concurrently or completed prior to taking this course.

There is a differential tuition fee of \$23.30 per credit hour for these courses. The fees are not covered by the School of Biological Sciences or the Tuition Benefit Program.

BIOI	5720 -	Biology of	Biotechno	loav. The	Path to	Invent l	Medicines
DICL	5120 -	Diology of	Diotectinio	nogy. The		III V CIIL I	neuronica

Class Number	Instructor	Credit Hours	Days/Times	Session	
19526	Ryan Watts	1.0	F 12:55PM –	Frist Half	
			2:50PM		

This course will introduce students to the world of biotechnology discovery and development and will teach real-world applications of biology in industry. From how to found a company, to the rigorous steps needed to bring a drug to patients, students will be introduced to the process of drug discovery and development from multiple perspectives, offering awareness around different career paths in the biotechnology industry. The course will also offer a basic understanding of functions that work in parallel with discovery research and drug development, including business strategy, portfolio decision-making and program management.

Lecture

BIOL 7961 – 002 - Computing with Python

Class Number	Instructor	Credit Hours	Days/Times	Session
14182	David Goldenberg	2.0	T/Th 10:45AM –	Second Half
			12:05PM	

Topics of special interest taught when justified by student and faculty interest. Content varies from year to year.

Special Topics

BIO C 7100 - 001 Metabolism

Class Number	Instructor	Credit Hours	Days/Times	Session
5102	Jared Rutter	1.0 – 2.0	TBA	Full Semester

Student and faculty discussion of advanced-level topics not covered in formal courses.

This class will be held in EIHG room 6400.

Advanced Seminar: Student and faculty discussion of advanced-level topics not covered in formal courses. Contact Jared Rutter, rutter@biochem.utah.edu , for course info and permission to register.

Special Topics

BIO C 7100 - 00)2 Adv Mthds Ele	ctron Microsco	ру	
Class Number	Instructor	Credit Hours	Days/Times	Session
14317	Peter Shen	1.0	TBA	First Half
Student and faculty	discussion of advance	ced-level topics not c	overed in formal cou	rses.

BLCHM 6400 - Genetic Engineering

Class Number	Instructor	Credit Hours	Days/Times	Session
14692	Greg Ducker & Matt	2.0	M/W/F 8:35AM -	Second Half
	Miller		9:25AM	

This course covers essential techniques used in genetic engineering. Assuming modest background in biology, the course introduces fundamental aspects of molecular biology including mechanisms for storage of information in DNA and transfer of this information to RNA and protein molecules. Manipulations of DNA molecules to rearrange or remodel genetic information (cloning) are described from both theoretical and practical viewpoints. Topics covered include the use of restriction endonucleases, amplification of DNA sequences using the polymerase chain reaction (PCR), detection of DNA and RNA using hybridization (Southern and Northern blotting), properties of cloning vectors and their use in constructing genomic and cDNA libraries, DNA sequencing and sequence analysis, creating and detecting mutations in DNA and introducing these mutations into a genome, and expression and characterization of proteins.

Contact Bioscience Program Office, <u>bioscience@genetics.utah.edu</u> for permission and enrollment instructions

Lecture

BLCHM 6450 - Biophysical Chemistry

Class Number	Instructor	Credit Hours	Days/Times	Session
1792	Jessica Swanson	2.0	M/W/F 9:35AM -	Second Half
			10:40AM	

Cross listed with CHEM 5450 & CHEM 7450

Topics covered include: Basics of thermodynamics and statistical mechanics, with applications in biochemistry; transport phenomena; enzyme kinetics and inhibition; kinetic isotope effects; principles and applications of absorbance, fluorescence, and CD spectroscopies.

Contact Chemistry and Jessica Swanson for permission and enrollment instructions

Lecture

BLCHM 6460 - Protein Chemistry

Class Number	Instructor	Credit Hours	Days/Times	Session
7133	Vahe Bandarian	2.0	M/W/F 8:20AM -	First Half
			9:25AM	

Cross listed with CHEM 5460 & CHEM 7460

This is a one half semester course which focuses on the mechanisms of chemical reactions involving peptides and proteins and methods for their study. Subject matter includes enzyme mechanisms, chemical modification of proteins and cofactor chemistry. Prerequisite: organic chemistry.

Contact Chemistry and Vahe Bandarian for permission and enrollment instructions

CHEM 7040 – 001 - Statistical Thermodynamics						
Class Number	Instructor	Credit Hours	Days/Times	36221011		
1821	Michael	2.0	M/W/F 11:00AM –	First Half		
	Gruenwald		12:05PM			
This course introdu thermodynamic prir engineers.	ces the statistical ma nciples. Covered topic	chinery used to conr cs are useful for cher	nect molecular behavio mists, physicists, biolog	r with jists, and		
Lecture						

Class Number	Instructor	Credit Hours	Days/Times	Session
13564	Valerie Molinero	2.0	M/W/F 11:00AM – 12:05PM	Second Half
this course covers solutions, and elec thermodynamic rel applications. The n	trochemistry. Students ations, equations, and naterial covered in this	modynamics, includi s will learn to derive I formulae and explo s course is useful for	ing phase and chemica and understand fundar ore their importance in r r scientists and enginee	l equilibria, nental nodern ers with a thorough

CHEM 7240 - Physical Organic Chemistry I					
Class Number	Instructor	Credit Hours	Days/Times	Session	
1823	Aaron Puri	2.0	T/Th 9:10AM –	First Half	
			10:30AM		
Fee: \$45.00 Physical organic chemistry studies the approaches to deciphering the mechanisms of organic reactions and the principles that govern host-guest binding. The topics include stereochemistry, conformational analysis, thermochemistry, acidity, tools to decipher reaction mechanisms, rate laws, kinetic isotope effects, linear free energy relationships.					

Lecture

CHEM 7250 - Physical Organic Chemistry II

		-			
Class Number	Instructor	Credit Hours	Days/Times	Session	
1826	Ryan Looper	2.0	M/W/F 9:35AM -	Second Half	
			10:40AM		
Course examines organic reaction mechanisms involving all fundamental reaction types. Included will					
be complex mechanisms as combinations of fundamental steps, orbital symmetry controlled reactions (with Woodward-Hoffman, Fukul, and Zimmerman treatments), trajectory analysis and radical reactions					
Lecture					

CHEM 7430 - Chemical Biology of Proteins and Nucleic Acids

Class Number	Instructor	Credit Hours	Days/Times	Session
13563	Ming Hammond	2.0	T/Th 9:10AM –	Second Half
			10:30AM	
This course is intended for advanced undergraduate students in Chemistry, Biology, Biochemistry,				
Biotechnology, and Bioengineering. The subject matter will include a brief background on biomolecular				
structure and function	on, then focus on the	use of organic chemis	stry as a tool for mani	pulating
biomolecules, explo	ring the breakthrough	technologies that ha	ve enabled recent ad	vantages in fields
including protein labeling, protein interactions, biosensors, and nanotechnology.				
2.1				
Lecture				

CHEM 7730 – Fundamentals of Electrochemistry				
Class Number	Instructor	Credit Hours	Days/Times	Session
13147	Shelley Minteer &	2.0	M/W/F 9:35AM -	First Half
	Henry White		10:40AM	
Fee: \$54.12				

This course will provide an overview of the fundamental concepts of electrochemical science. The course is devoted to the basic principles underlying chemical reactions at the electrode/electrolyte interface.

Lecture

CHEM 7740 – Techniques and Applications of Electrochemistry

Class Number	Instructor	Credit Hours	Days/Times	Session
14503	Shelley Minteer &	2.0	T/Th 9:10AM –	Second Half
	Henry White		10:30AM	

This course is designed to introduce you to electrochemical reaction mechanisms, electroanalytical techniques, and electrochemical technologies. Topics to be covered include: a variety of voltammetric and amperometric techniques, electrochemical reaction mechanisms and modified electrodes, and modern electrochemical technologies.

Lecture

CHEM 7770 - Analytical Spectroscopy and Optics

Class Number	Instructor	Credit Hours	Days/Times	Session
13565	John Conboy	2.0	T/Th 9:10AM –	First Half
			10:30AM	

Three lectures, one discussion per week for 7.5 weeks. This course provides an overview of the principles of optical spectroscopy covering the following topics: Basic optics, such as light propagation, polarization, Fresnel's equations, and elementary optics. Mechanics of optical spectroscopy, including light sources, wavelength selection, and dectors. Sensitivity and dynamic range in spectroscopic measurements. Advanced topics in absorbance, fluorescence and vibrational (IR and Raman) spectroscopy. Surface spectroscopic methods based on optical waveguides, total internal reflection, and surface plasmon resonance. Nonlinear optical spectroscopes, including second-harmonic generation and sum-frequency generation.

H GEN 6030 - Special Topics in Genetics				
Class Number	Instructor	Credit Hours	Days/Times	Session
7311	Mark Metzstein	2.0	TBA	Full Semester
Seminar for Human Genetics graduate students covering current topics in the scientific literature.				

H GEN 7380 - Biochemical Genetics

Class Number	Instructor	Credit Hours	Days/Times	Session
8942	Nicola Longo &	3.0	M: 3:30PM –	Full Semester
	Marzia Pasquali		5:30PM W:	
			4:30PM – 5:30PM	

This course will educate physicians and graduate students on the fundamentals of biochemical genetics. Includes inborn errors of metabolism and several common disorders, such as diabetes and hypertension, which have biochemical bases correctable by diet or other medical intervention. Provides overview of biochemical pathways, practical experience on how the biochemical pathways can be studied in vivo and in vitro, the molecular bases of common metabolic problems, the mechanism of inheritance including recurrence risk, and how to rationally treat metabolic blocks.

Lecture

MDCRC 6521 – Medicine & Physiology for Molecular Biologists

Class Number	Instructor	Credit Hours	Days/Times	Session
14034	Kevin Whitehead	1.0-5.0	T/Th 9:10AM –	Full Semester
			10:30AM	

This course explores and provides a richer understanding of human physiology and pathophysiology. This information is critical for understanding the importance of any molecular mechanism at the level of cells, organ and whole animals, and applying this information to humans.

This course has a DIFFERENTIAL TUITION attached to it that is NOT covered by the Tuition Benefit Program.

Special Topics

MBIOL 6410 – 002 - Protein & Nucleic Acid Biochemistry				
Class Number	Instructor	Credit Hours	Days/Times	Session
8540	Brenda Bass &	2.0	M/W/F 10:45AM –	First Half
	Paul Sigala		11:35AM	

Cross listed with BLCHM 6410 & MBIOL 6410

The Biochemistry course covers the structure and function of nucleic acids and proteins, as well as the thermodynamics and kinetics of their interactions with each other and with other biologically important molecules. It is expected that all students have taken an undergraduate course in Biochemistry, and you may find it useful to review chapters discussing the above-mentioned subjects in an undergraduate Biochemistry textbook. You will also need to have a basic working knowledge of kinetics and thermodynamics. (So, if you are not comfortable working with equilibrium constants, free energies, and rate constants, please review these topics in an undergraduate chemistry text.) There are no required texts for this class; readings from various texts will be made available to the class. Some professors may administer a pre-quiz at the start of their lectures to make sure you are adequately prepared for the material to be covered

Contact Bioscience Program Office, <u>bioscience@genetics.utah.edu</u> for permission and enrollment instructions

Lecture

MBIOL 6420 - G3: Genetics, Genomes, and Gene Expression					
Class Number	Instructor	Credit Hours	Days/Times	Session	
8541	Anthea Letsou	3.0	M/W/F 8:35AM -	Full Semester	
			9:25AM		
This course covers	transmission genetics	s, methods of genetic	and genome analysis	s in model systems	
and humans, as we	ll as transcriptional ar	nd post-transcriptiona	I mechanisms of gene	e regulation.	
Lectures cover both	classical achievement	nts and recent advan	ces in these fields, wi	th readings based	
chiefly in the primar	y literature. Grades a	re based on exams a	nd problem sets. In p	revious years, we	
have found that son	ne students have stru	ggled in this graduate	e level course in Gene	etics. Success in G3	
requires a foundation	nal understanding of	transmission genetic	s (i.e. successful com	pletion of an	
undergraduate cour	se in genetics) as the	course focuses heav	vily on genetic analysi	s. All students	
should review the b	asic concepts and stu	idents who have not t	taken a comprehensiv	e undergraduate	
course in Genetics or have been working in a lab for a number of years should delay taking G3 until the					
following fall and complete a prerequisite undergraduate course.					
Contact Bioscience Program Office, bioscience@genetics.utah.edu for permission and enrollment					

Lecture

instructions.

MBIOL 7570 - Case Studies and Research Ethics

Class Number	Instructor	Credit Hours	Days/Times	Session
6095 / 17138	Joyce Havstad	1.0	Online	First Half / Second
				Half

Cross listed with PHIL 7570

An examination of research integrity and other ethical issues involved in scientific research. Topics may include scientific fraud, conflicts of interest, plagiarism and authorship designation, and the role of science in formulating social policy. This course is designed for graduate students, post-docs and regular faculty in the sciences.

Enrollment does not require a permission code

Lecture

NEUSC 6100 - \	/isual Neuroscie	nce and Retinal	Diseases	
Class Number	Instructor	Credit Hours	Days/Times	Session
18603	Jun Yang	3.0	T/Th 1:15PM –	Full Semester
			2:45PM	
The visual system h	nas provided fundame	ental information abou	it brain function in par	t because of the
ease of manipulatin	g the stimulus (light)	and the easy accessi	bility of the sensory tis	ssue (retina is the
only part of the CNS	S that can be examine	ed without surgery). T	his course will provide	e a comprehensive
overview of retinal of	development, cell biol	ogy, circuitry, physiol	ogy, and pathology as	s well as visual
cortex signal proces	ss. This course will be	taught by a team of	knowledgeable instru	ctors. The
participants will gair	n an understanding of	how various facets o	of light stimuli become	encoded into
neuronal signals an	d how these signals a	are segregated into pa	arallel streams of visu	al information that
encode luminance, color, direction selectivity, and form. We will study synaptic physiology of tonic &				
phasic neurotransmission that underlie the center-surround organization of receptive fields. In the end,				
we will examine novel insights about the roles of the immune system, vascular system and glial cells in				
regulation of retinal	function and disease			

ONCSC 6700 – Cancer Genomics					
Class Number	Instructor	Credit Hours	Days/Times	Session	
19951	Jay Gertz & K-T	2.0	T 3:00PM –	Second Half	
	Varley		5:00PM		
Variey 5:00PM Genomic assays have revolutionized our understanding of the molecular defects that occur in cancer genomes. This knowledge has shaped our understanding of how tumors arise, revealed extensive heterogeneity within and between patients' tumors, influenced our treatment strategies, and led to new insights about the basic biology of transcription regulation. This course will introduce students to genomic assays that can be used to study cancer. Emphasis will be placed on understanding the capabilities and limitations of different genomic methods and exploring how the techniques can be applied to address new questions. This is an advanced seminar course with a focus on primary literature, student presentations, and project based learning.					
Prerequisite: This co	Prerequisite: This course is designed for graduate students that have completed their first year.				

Masks currently required @ 3' distance please refer to: https://pulse.utah.edu/site/HCI/HCICOVID19/Pages/Conference Rooms.aspx

Special Topics

PATH 7330 - Basic Immunology

Class Number	Instructor	Credit Hours	Days/Times	Session
5085	Hans Haecker	3.0	T/Th 2:00PM –	Full Semester
			3:30PM	

Cross listed with PATH 5030

Basic Immunology, PATH 7330, is designed to survey major topics in immunology, and is appropriate for Ph.D. students needing a survey course in immunology.

Lecture

PHCEU 7010 - Molecular Biology for Pharmaceutical Scientists

Class Number	Instructor	Credit Hours	Days/Times	Session	
10554	Carol Lim &	1.5	M/W 11:00AM -	Second Half	
	Katherine		12:30PM		
	Bowman				
This course will review fundamental aspects of genetic engineering and molecular biology, with					
application to health	n sciences.				

Lecture

PHCEU 7030 - Macromolecular Therapeutics and Drug Delivery

Class Number	Instructor	Credit Hours	Days/Times	Session
8286	You Han Bae	2.0	T/Th 8:50AM –	First Half
			10:50AM	

Introduction to polymer in Pharmaceutics and drug delivery. Transport phenomena in drug delivery systems. Macromolecular and vesicular carriers. Biorecognition and drug targeting. Protein, oligonucleotide, and gene delivery systems.

Lecture

PHCEU 7040 – Biotechnology

Class Number	Instructor	Credit Hours	Days/Times	Session
15750	Jim Herron &	3.0	M/W 9:40AM	First Half
	Shawn Owen		11:45AM	

Principles of kinetics and mechanisms of organic reactions and structure-reactivity relationships applied to pharmaceutical systems. Mechanisms of the degradation and stabilization of drugs, proteins, and DNA.

Lecture

PH TX 7113 - Essentials of Pharmacology and Drug Development

Class Number	Instructor	Credit Hours	Days/Times	Session
13531	Lou Barrows &	3.0	T/Th 1:30PM –	Full Semester
	Gabriel Bosse		3:00PM	

This course will introduce graduate students to the basic principles of pharmacology and toxicology. The first half of the course will focus on the role of drug molecule structure, receptor physiology, ion channels, transporter functions, ligand binding kinetics and intracellular signaling in relation to biological effects of drugs.

The second half of the course will introduce the basic principles of pharmacokinetics including physiochemical factors and individual variations that affect the absorption, distribution, metabolism and excretion of drugs. This course will also introduce the students to drug development principles including strategies used by pharmaceutical companies for drug screening, the role of regulatory agencies, designing of clinical trials and issues related to risk assessment during drug development

including adverse drug reactions and the role of pharmacogenetics.